Problem set 11 solutions

Problem 1.

part a. In the relaxation time approximation, the Boltzmann equation is
\[
\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \vec{a} \cdot \nabla_v f = -\frac{f - f_0}{\tau_c}.
\]

We consider a steady state configuration, with \(\frac{\partial f}{\partial t} = 0 \). Since there is no external potential, the acceleration \(\vec{a} = 0 \). \(f_0 \) is dependent on \(x \), and \(f_1 \) is assumed to be much less than \(f_0 \), so we can neglect the contribution of \(f_1 \) to the gradient term on the left hand side. Thus, using \(f = f_0 + f_1 \), we’re left with
\[
-\frac{f_1}{\tau_c} = v_x \frac{\partial f_0}{\partial x} = v_x \frac{\partial f_0}{\partial \tau} \frac{d\tau}{dx}.
\]

The equilibrium distribution function \(f_0 = \exp \left(\frac{\mu - \epsilon}{\tau} \right) \) is a function of energy \(\epsilon(\vec{v}) \), chemical potential \(\mu(x) = \tau(x) \log(n/n_Q(x)) \), and temperature \(\tau(x) \). Differentiating with respect to temperature gives
\[
\frac{\partial f_0}{\partial \tau} = \exp \left(\frac{\mu - \epsilon}{\tau} \right) \frac{\partial}{\partial \tau} \left(\frac{\mu - \epsilon}{\tau} \right) = f_0 \left(-\frac{3}{2\tau} + \frac{\epsilon}{\tau^2} \right).
\]

Plugging this into the expression for \(f_1 \) gives
\[
f = f_0 + f_1 = f_0 - \tau_c v_x f_0 \frac{d\tau}{dx} \left(-\frac{3}{2\tau} + \frac{\epsilon}{\tau^2} \right).
\]

part b. The energy flux in the \(x \) direction is given by
\[
J_x = \int v_x(\epsilon) f \mathcal{D}(\epsilon) d\epsilon.
\]

Since there is no net energy flux at equilibrium, the zeroth order term in \(J_x \) is zero, and we may replace \(f \) by \(f_1 \) in the above expression. Plugging in \(f_1 = f - f_0 \) from part a gives
\[
J_x = -\tau_c \frac{d\tau}{dx} \int v_x^2 f_0 \left(-\frac{3}{2\tau} + \frac{\epsilon}{\tau^2} \right) \mathcal{D}(\epsilon) d\epsilon.
\]

part c.
\[
J_x = -\tau_c \frac{d\tau}{dx} \int v_x^2 \exp \left(\frac{\mu - \epsilon}{\tau} \right) \left(-\frac{3}{2\tau} + \frac{\epsilon}{\tau^2} \right) \mathcal{D}(\epsilon) d\epsilon
\]
\[
= -\tau_c \frac{d\tau}{dx} e^{\mu/\epsilon} \left(\frac{2\epsilon}{3m} e^{-\epsilon/\tau} \left(-\frac{3}{2\tau} + \frac{\epsilon}{\tau^2} \right) \left(\frac{1}{4\pi^2} \frac{2m}{\hbar^2} \right)^{3/2} \epsilon^{1/2} \right) d\epsilon
\]
\[
= -\tau_c e^{\mu/\epsilon} \frac{d\tau}{dx} \left(\frac{2}{3m} \frac{1}{4\pi^2} \frac{2m}{\hbar^2} \right)^{3/2} \left(-\frac{3}{2} \left(\frac{7}{2} \right) + \Gamma \left(\frac{9}{2} \right) \right)
\]
\[
= -\frac{5n\tau_c}{m} \frac{d\tau}{dx}
\]
\[
\Rightarrow K = \frac{5n\tau_c}{m}
\]
Problem 2. Selenium is the only non-metallic element that is solid at room temperature and has a sound speed listed on http://www.webelements.com. The relevant physical quantities for selenium are \(c = 3350 \text{ m/s}, K = 0.52 \text{ W m}^{-1} \text{ K}^{-1}, \) \(C_p = 25.36 \text{ J mol}^{-1} \text{ K}^{-1}, n = 6.09 \times 10^4 \text{ mol m}^{-3}, \) and \(\ell \approx n^{-1/3} = 3.01 \times 10^{-10} \text{ m}. \) Computing the thermal diffusivity using the sound speed and lattice spacing gives \(D = \frac{1}{c} \ell^2 = 3.36 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}. \) and computing \(D \) using the thermal conductivity gives \(D = \frac{K}{\kappa_m} = 3.37 \times 10^{-7} \text{ m}^2 \text{ s}^{-1}. \) These values are remarkably similar.

Problem 3. The solution to the heat equation in a semi-infinite medium is given in equation 15.13 in the text, so we need only combine solutions of the appropriate frequencies. The temperature as a function of depth \(z \) and time \(t \) is
\[
\theta(z, t) = \theta_0 + \theta_d e^{-z/\delta_d} \cos(\omega_d t - z/\delta_d) + \theta_a e^{-z/\delta_a} \cos(\omega_a t - z/\delta_a),
\]
where the subscripts “d” and “a” denote “daily” and “annual”, respectively. When the daily and the annual fluctuations are each at a minimum, the temperature will be \(\theta_{\text{min}}(z) = \theta_0 - \theta_d e^{-z/\delta_d} - \theta_a e^{-z/\delta_a}. \) In order to keep the pipes from freezing, they must be buried deeply enough that the minimum temperature (in degrees Celsius) is nonnegative. Setting \(\theta_{\text{min}} = 0, \) and using the definition of \(\delta \) in the text, we can solve numerically to find \(z = 11.6 \text{ cm}. \)

Problem 4. Assume that the slab is infinite in the \(x \) and \(y \) directions, so that the temperature depends only on \(z \) and \(t. \) We begin by writing the temperature as a sum of plane waves,
\[
\tau(z, t) = \theta_0 + \sum_{n=1}^{\infty} \tau_n \exp(i k_n z - i \omega_n t).
\]
At all \(t, \) \(\tau(0, t) - \theta_0 = 0. \) Thus, setting \(t = 0 \) and \(z = 0, \) we have \(\Re(\tau_n) = 0 \) for all \(n. \) Similarly, at \(t = 0 \) and \(z = 2a, \) \(\theta(2a, 0) - \theta_0 = 0 = \Re(\tau_n \exp(2i n a)) = \Im(\tau_n) \sin(2n \pi a) = 0, \) which implies \(k_n = \frac{n \pi}{2a}. \) This implies that, at \(t = 0, \)
\[
\tau(z, 0) - \theta_0 = \theta_1 - \theta_0 = \sum_{n=1}^{\infty} \Im(\tau_n) \sin\left(\frac{n \pi z}{2a}\right).
\]
Multiplying by \(\sin\left(\frac{m \pi z}{2a}\right), \) and integrating with respect to \(z \) from 0 to \(2a, \) gives the coefficients \(\Im(\tau_m), \)
\[
\int_0^{2a} (\theta_1 - \theta_0) \sin\left(\frac{m \pi z}{2a}\right) dz = \sum_{n=1}^{\infty} \Im(\tau_n) \int_0^{2a} \sin\left(\frac{n \pi z}{2a}\right) \sin\left(\frac{m \pi z}{2a}\right) dz
\]
\[
= \sum_{n=1}^{\infty} \Im(\tau_n) a \delta_{mn} = \Im(\tau_m) a
\]
\[
\Rightarrow \Im(\tau_m) = \frac{1}{a} \int_0^{2a} (\theta_1 - \theta_0) \sin\left(\frac{m \pi z}{2a}\right) dz
\]
\[
= \frac{4(\theta_1 - \theta_0)}{m \pi} \text{ for odd } m, \text{ and } 0 \text{ for even } m.\]
Finally, using the dispersion relation $Dk^2 = i\omega$, we can write down the temperature as a function of position and time,

$$\tau(z,t) = \theta_0 + \sum_{n=0}^{\infty} \frac{4(\theta_1 - \theta_0)}{(2n + 1)\pi} \sin \left(\frac{(2n + 1)\pi z}{2a} \right) \exp \left(-\frac{Dn^2\pi^2 t}{4a^2} \right).$$

At large t, $\tau(z,t) \approx \theta_0 + \frac{4(\theta_1 - \theta_0)}{\pi} \sin \left(\frac{\pi z}{2a} \right) \exp \left(-\frac{D\pi^2 t}{4a^2} \right)$. The value of t at which $\tau(a,t) - \theta_0 = (\theta_1 - \theta_0)/100$ is given by

$$\frac{\theta_1 - \theta_0}{100} = \tau(a,t) - \theta_0 = \frac{4(\theta_1 - \theta_0)}{\pi} \sin(\pi/2) \exp \left(-\frac{D\pi^2 t}{4a^2} \right).$$

$$\Rightarrow \exp \left(-\frac{D\pi^2 t}{4a^2} \right) = \frac{\pi}{400} \Rightarrow t = \frac{4a^2}{D\pi^2} \log \left(\frac{400}{\pi} \right).$$

Problem 5.

part a. Putting $\hat{J}_u = -K\vec{\nabla}\tau$ into $\hat{C}\frac{\partial r}{\partial t} + \vec{\nabla} \cdot \vec{J}_u = g_u$ gives $\hat{C}\frac{\partial r}{\partial t} = K\nabla^2 \tau + g_u$. At steady state, $\frac{\partial \tau}{\partial t} = 0$, and we have $\nabla^2 \tau = -g_u/K$. Since τ is independent of z and φ, the Laplacian of τ in cylindrical coordinates is $\nabla^2 \tau = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \tau}{\partial r} \right)$, so

$$\frac{\partial}{\partial r} \left(r \frac{\partial \tau}{\partial r} \right) = -\frac{g_u r}{K} \Rightarrow r^2 \frac{\partial \tau}{\partial r} = -\frac{g_u r^2}{2K} + \text{const.}$$

In order for τ to be finite at $r = 0$, we must have $\lim_{r \to 0} r \frac{\partial \tau}{\partial r} = 0$, so the constant above vanishes. Integrating once more, we find $\tau(r) = -\frac{g_u r^2}{4K} + \text{const}$. The temperature difference between the outer surface $r = a$ and the center is

$$\Delta \tau = \tau(0) - \tau(a) = \frac{g_u a^2}{4K}.$$

part b. For a spherical geometry,

$$\nabla^2 \tau = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \tau}{\partial r} \right) = -\frac{g_u}{K}$$

$$\Rightarrow \frac{\partial}{\partial r} \left(r^2 \frac{\partial \tau}{\partial r} \right) = -\frac{g_u r^2}{K}$$

$$\Rightarrow r^2 \frac{\partial \tau}{\partial r} = -\frac{g_u r^3}{3K}$$

$$\Rightarrow \tau(r) = -\frac{g_u r^3}{6K} + \text{const}$$

$$\Rightarrow \Delta \tau = \tau(0) - \tau(a) = \frac{g_u a^2}{6K}.$$