I finally got it. My spreadsheet is attached. I condensed it down for you. When you have one satellite, you will be able to tell time to within .1 seconds and you will know that you are within 85 degrees of the satellite either one way or the other (for a grand total of about 170 degrees). With two satellites, you will be able to tell time to within a closer range, just add .1 seconds to the earliest signal and .6 to the last one. That will give you the range. The only way that the range is not decreased is if the satellites are an equal distance from you. You will also be able to minimize the relative longitude which you are at. However, if you were to change the altitude, you would be able to find a different longitude which still works. So the longitude would be dependent on altitude, which is unknown. With all three, you will be able to pinpoint the exact location altitude and time. For 3D world (which we live in), you would need four satellites because of the added variable of latitude. For the scenario in which the earth were turning (as it normally does turn), you would have to calculate the distance as not only the delay of the satellite times the speed of light, but you would have to subtract the distance that the earth rotated (or add it if the earth is spinning away from the satellite). I still want to create a formula (or more appropriately a set of them) that will give me the answer nicely.